

GCAN-305

Embedded CANopen (slave) to UART

User Manual

Document version 3.23 (2017/03/22)

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Revision History:

Version Date Reason

V1.00 2013/06/16 Create document

V2.01 2013/12/20 Fixed working parameter

V3.01 2015/04/22 Add some parameters

V3.02 2015/08/08 Add some parameter

V3.23 2017/03/22
Add Modbus common

function code description

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Contents

1. Introduction ..4

1.1 Overview ..4

1.2 Performance ..4

1.3 Static parameters ..5

2. Installation..6

2.1 System connection structure ...6

2.2 Module interface definition ..6

3.1 GCAN-305 evaluation baseboard ..8

3.2 Module state transition ...8

3.3 System state indicator ...9

3.4 GCAN-305 node ID and CAN-bus baud rate ..10

4. CANopen protocol used in GCAN-305 (DS301) ..14

4.1 GCAN-305 predefined connection ...14

4.2 GCAN-305 operation ...14

5. Serial port operation ...26

5.1 Serial port communication protocol ...26

5.2 Operation command ...27

5.3 GCAN-305 serial port error response ..40

Sales and service ..42

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

1. Introduction

1.1 Overview

GCAN-305 is an embedded CANopen(slave) conversion module. The CANopen slave

protocol stack code has been integrated in this module and does not require to do

secondary development. Protocol stack conform to CANopen protocol description file

DS301, DS302, DS303, and DS305. By default, CANopen slave station enable

predefined connections and support parameters storage.

GCAN-305 has 1 channel CAN interface, which can be connected to CANopen Bus. In

addition, GCAN-305 has two UART interfaces - a communication UART interface

(communication baud rate of 1200 ~ 115200bps), a debug UART interface (fixed baud

rate 115200bps).

GCAN-305 is suitable for any serial port system. With this module, the existing serial

communication device can have CANopen communication capability at the fastest speed.

Users only need to use a simple serial communication protocol to achieve communication

with GCAN-305, complete the module configuration and data exchange with the

CANopen Bus.

Kernel program can be upgrated remotely, customized EDS file and program firmware is

also available, and this help to maintain the CANopen function of the your device.

1.2 Performance

 Network management service object (NMT: Boot up, Node Guarding /Life guarding,

Heartbeat Producer)

 Process data object (12 TPDO and 12 RPDO)

 Support service object (SDO server)

 Support emergency message object (Emergency)

 Support synchronization message object (Sync)

 Support network configuration object (LSS slaves)

 Support network time consumption

 Serial baud rate: 1200 ~ 115200bps, can be customized

 Serial communication capability (UART, TTL level)

 96-byte input and output data buffer (I/O)

 Support DIP switch to set slave station number (1~127) and CAN baud rate (20kbps,

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

50kbps, 100kbps, 125kbps, 250kbps, 500kbps, 800kbps, 1000kbps), this is function

of GCAN-305 Development board

 Max CAN->UART conversion time: 1ms

 Max UART->CAN conversion time: 2ms

 Size: 32mm×20.4mm×11mm (DIP24 package)

 Working voltage/current: +5V/80mA

 IO voltage: 3.3V

 Working and storage temperature: -40℃~85℃

1.3 Static parameters

Shown in Table 1.1. Each parameter is measured at room temperature.

Symbol Definition Test Conditions Max Min Unit

Power

VDD Supply voltage 4.5 6 V

IDD Supply current
All I/O no connect,

input voltage 5V
65 85 mA

I/O interface

VIL Low-level input voltage VDD = 5V - 0.8 V

VIH High-level input voltage VDD = 5V 2.0 5.5 V

VOL Low-level output voltage IOL = -4mA - 0.4 V

VOH High-level output voltage IOH = -4mA 2.6 3.3 V

IOL Low-level output current VOL = 0.4V - 4 mA

IOH High-level output current 2.6V≤VOH≤VDD - -4 mA

IOL
Low-level short circuit

current
2.6V≤VOL≤3.3V - 50 mA

IOH
High-level short circuit

current
VOH = 0V - -45 mA

Table 1.1 Static Parameters of GCAN-305

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

2. Installation

This chapter describes the connection methods and precautions of GCAN-305.

2.1 System connection structure

System structure of GCAN-305 as shown in Figure 2.1, connect CPU serial port (TTL

level) with the serial port of GCAN-305, and connect the CAN-bus interface of the

module to the CANopen network through the CAN transceiver to establish the CPU and

Bridging of CANopen networks. The data sent by the serial port of the CPU will be sent

to the CAN-bus in the form of PDO messages and read the RPDO data from the

CAN-bus. Of course, the user can also configure the parameters of module through the

serial port.

Figure 2.1 GCAN-305 system structure

The GCAN-305 module can use the DIP switch to set the device's Node ID and CAN

communication baud rate. In special cases, it can also be set without using the DIP switch.

The module's node number and CAN communication baud rate can be set via the UART

interface or CANopen layer (LSS).

2.2 Module interface definition

The dimensions of the GCAN-305 are shown in Figure 2.2, 32*20.4*11

(length*width*height, unit: mm). Its definition is shown in Table 2.1.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Figure 2.2 RS485 interface definitions

Number Name Function Number Name Function
1 GND ground 24 VCC Power input（5V）

2 /Rst Reset 23 CAN-R CAN receive

3 UART1-T Serial port transmit 22 CAN-T CAN transmit

4 UART1-R Serial port receive 21 ID0 Input node number 0

5 UART0-T Debug/Update serial

port transmit

20 ID1 Input node number 1

6 UART0-R Debug/Update serial

port receive

19 ID2 Input node number 2

7 /INT Interrupt pin 18 ID3 Input node number 3

8 Brt0 Baud rate set 0 17 ID4 Input node number 4

9 Brt0 Baud rate set 1 16 ID5 Input node number 5

10 Brt0 Baud rate set 2 15 ID6 Input node number 6

11 Brt0 Baud rate set 3 14 E-Led Error indicator（red）

12 /ISP-EN Enable update 13 R-Led Run indicator（green）

Table 2.1 The pin definition of module

Since the CAN transceiver is not integrated in the GCAN-305 module, an external CAN

transceiver is required.

UART0 serial port is the debugging output and program upgrade interface of GCAN-305

module. It is recommended that the serial port be exported during the product debugging

stage to facilitate users to debug their own programs. It is not necessary to export the

serial port when the product stability is guaranteed.

Typical schematic and PCB design, please see the GCAN-305 technical documentation

for details.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

3. Usage

3.1 GCAN-305 evaluation baseboard

Provide users with GCAN-305 supporting evaluation, development, debugging, test

baseboard, as shown in Figure 3.1. The baseboard covers all GCAN-305 functions,

making it easy for users to develop and debug modules.

Figure 3.1 GCAN-305 evaluation board

3.2 Module state transition

The GCAN-305 state transition diagram shown in Figure 3.2, the various letters in the

figure can be performed under various conditions,

 a. NMT

 b. Node Guard

 c. SDO

 d. Emergency

 e. PDO

 f. Boot-up

The arrows in the figure represent the conversion relations between the various states,

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

and the numbers indicate the operations that need to be performed in this conversion:

 1：Start_ Remote_ Node (0x01)

 2：Stop_ Remote_ Node (0x02)

 3：Enter_ Pre-Operational_ State (0x80)

 4：Reset_ Node (0x81)

 5：Reset_ Communication (0x82)

 6：Finish the initialization, enter Pre_ Operational state automatically, send

 Boot-up message

Figure 3.2 GCAN-305 state transition diagram

3.3 System state indicator

According to the definition of the CANopen protocol specification document DS303-3,

two LEDs are used in the GCAN-305 module to indicate the current state of the module,

as shown in Table 3.1.

Indicator Color Pin

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

RUN Green 13

ERR Red 14

Table 3.1 System state indicator

The meanings of various statuses indicated by the status indicators are shown in Table

3.2 and Table 3.3.

NO. ERR LED State Description

1 Dark No error Device is in working condition

2 Flash it
Arrival alert

value

At least one error counter of the CAN controller

reached or exceeded the alert value (too many error

frames)

3 Bright Bus closed CAN controller bus close

Table 3.2 Error Status Indicator (ERR) State Meaning

NO. RUN LED State Description

1 dark breakdown
Please check whether the module reset pin and

power supply are connected correctly

2 Flash Pre-operational pre-operational state

3 bright Operation working state

Table 3.3 Run Status Indicator (ERR) State Meaning

3.4 GCAN-305 node ID and CAN-bus baud rate

The GCAN-305 module provides three ways to set the node ID and node baud rate. The

setting order is shown in Figure 3.3 and Figure 3.4. If the DIP switch value is valid,

enable the value at power-on. And even if a valid ID value is stored in the memory, it will

not be used. If the master station performs LSS setting on the module during operation,

the value set by the LSS is used. However, after the module is powered on or restarted,

the value of the DIP switch is still used.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Figure 3.3 Node ID setting order

Figure 3.4 Baud rate setting order

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

The DIP switch for setting the node ID uses 7 bits. When the value is 0, the DIP switch is

invalid. The value range is 1 to 127. The index value of baud rate uses 4 bits, and dial up

to 0 and down to 1. When the baud rate DIP switch 4 is 1 (the DIP switch 4 is down),

the baud rate is determined by software. When the baud rate dip switch 4 is 0 (that

is, the dip switch 4 is upward), the baud rate is determined by the dip switch. See

Table 3.4 for details.

 Baud rate

1000k

800k

500k

250k

125k

100k

50k

20k

Figure 3.5 The relationship between baud rate index and actual comparison

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

4. CANopen protocol used in GCAN-305 (DS301)

4.1 GCAN-305 predefined connection

The GCAN-305 module uses the 0x1000~0x1FFF of the object dictionary and the

0x2000~0x5FFF of the manufacturer's custom area. These object dictionaries are

responsible for communication and data exchange between CANopen and other

application data on the CAN network. The object dictionary is defined as indexes and

sub-indexes. Each object dictionary item has its own data length (UINT8, UINT16,

UINT32, etc) and attributes (RO, WO, RW, CONST, MAPPALE). The data of these

object dictionaries can be modified by the SDO service. Of course, only the attributes of

these items must be modified by WO or RW.

The predefined connection means that the COB-ID related communication is associated

with the node ID. The specific predefined connection set is shown in Table 4.1.

Object Function

code

Node

address

COB-ID Object dictionary

index

Broadcast message
NMT 0000 - 0 -

SYNC 0001 - 0x80 0x1005, 0x1006, 0x1007

TIME STAMP 0010 - 0x100 0x1012, 0x1013

Point-to-point messages

Emergency 0001 1-127 0x81-0xFF 0x1014, 0x1015

TPDO1 0011 1-127 0x181-0x1FF 0x1800

RPDO1 0100 1-127 0x201-0x27F 0x1400

TPDO2 0101 1-127 0x281-0x2FF 0x1801

RPDO2 0110 1-127 0x301-0x37F 0x1401

TPDO3 0111 1-127 0x381-0x3FF 0x1802

RPDO3 1000 1-127 0x401-0x47F 0x1402

TPDO4 1001 1-127 0x481-0x4FF 0x1803

RPDO4 1010 1-127 0x501-0x57F 0x1403

Default SDO (tx) 1011 1-127 0x581-0x5FF 0x1200

Default SDO (rx) 1100 1-127 0x601-0x67F 0x1200

NMT error

control

1110 1-127 0x701-0x77F 0x1016, 0x1017

Table 4.1 CANopen predefined connection set

4.2 GCAN-305 operation

4.2.1 Network management Service (NMT)

1. Network control (NMT Module Control)

The GCAN-305 supports the network management commands defined by the DS301.

These network management commands can be sent from the CANopen master station or

other slave nodes. The operation commands are shown in Table 4.2. When Node ID=0,

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

all slave devices are controlled (broadcast mode), CS is the command word

corresponding to different control actions as shown in Table 4.3.

COB-ID(CAN-ID) DLC BYTE0 BYTE1
0x000 2 CS

(command specifier)

Node ID

(Node number)

Table 4.2 NMT operation instruction

CS

（command specifier）

NMT service

（control action）
0x01 Start slave device

0x02 Stop slave node device

0x80 Enable slave into preoperational

0x81 Reset slave node

0x82 Reset node communication

Table 4.3 NMT command specifier and its function service

Example: To start all nodes in the CANopen network, use the commands shown in Table

4.4.

COB-ID(CAN-ID) DLC BYTE0 BYTE1
0x000 2 0x01 0x00

Table 4.4 NMT start slave node

If you need control a specific device in the network to enter the pre-operation state,

assuming that the node address is 0x03, the commands are shown in Table 4.5.

COB-ID(CAN-ID) DLC BYTE0 BYTE1
0x000 2 0x80 0x03

Table 4.5 NMT start specified slave node

2. Node guarding (NMT Node Guarding)

With the node guarding service, the NMT master node can check the current status of

each node. This service is particularly meaningful when these nodes have no data

transmission. The master node triggers the node guarding of the corresponding slave

node by sending a remote frame. The command format is shown in Table 4.6. The slave

node responds to the corresponding format as shown in Figure 4.7.

Master node → Slave node (Command)

COB-ID(CAN-ID) DLC
0x700 + Node ID 1

Table 4.6 NMT master node guarding command frame (remote frame)

Slave node → master node (response):

COB-ID(CAN-ID) DLC BYTE0
0x700 + Node ID 1 Bit7:trigger bit, Bit0~Bit6 status

Table 4.7 NMT slave node response frame

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

The top bit (bit7) in Byte0 is the trigger bit. That is, every time slave station sends a

frame, the answer will alternate change(0, 1) to show the difference between frames and

frames. Among them, Bit0~Bit6 is the status of the slave node. The status of the slave

station expressed by this value is shown in Table 4.8.

Value Status

0x00 Initializing

0x04 Stopped

0x05 Operational

0x7F Pre-operational

Table 4.8 The status value of node guarding

Example: Assume that the master node needs node guarding for the slave node number

0x03. The commands are shown in Table 4.9. The slave node response frames are shown

in Table 4.10.

Master node → Slave node:

COB-ID(CAN-ID) DLC
0x703 1

Table 4.9 Node guarding (remote frame)

Slave node → master node:

COB-ID(CAN-ID) DLC BYTE0
0x703 1 0x85

Table 4.10 Slave node(0*03) response frame

Bit7=1 of BYTE0 and status=0x05, indicating that the slave with node number 0x03 is in

operation.

3. Life guarding (NMT Life Guarding)

Node guarding is mainly aimed at obtaining the status of the slave node from the master

node of the NMT, and the lifetime guarding is the monitoring of the node to another node.

It includes two parameters, namely guarding time and life factor. The node with lifetime

guarding receives remote frames from another node (the remote frame format is the same

as the node guarding frame format shown in Table 4.6). The node with lifetime guarding

receives it, and the remote frame responds to the state of the node (the response frame

format is shown in Table 4.7).

The two parameters of life guarding: guarding time and life factor (0x100C and 0x100D

respectively in the object dictionary) constitute the life time of the node (life time =

guarding time x life factor), the unit of guarding time is milliseconds. If one of the two

parameters is 0, indicating that life protection is not enabled. If the remote frame is not

received within the guarding time, the “Message Lost” message will appear. If the

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

remote frame is not received within the lifetime, the “Connection Lost” message will

appear. These messages will be printed out in the debug serial port. The error indicator

appears "blinks twice" to indicate the loss of current life guarding.

4. Start message (NMT Boot-up)

When the GCAN-305 is initialized (Boot-up), an identification message will be sent. The

format of the message is shown in Table 4.11.

COB-ID(CAN-ID) DLC BYTE0
0x700 +NodeID 1 0x00

Table 4.11 Initialization identifier message format

Example: If the node number of GCAN-305 is 0x03, then the start message sent is

shown in Table 4.12.

COB-ID(CAN-ID) DLC BYTE0
0x703 1 0x00

Table 4.12 0x703 node initialization identifier message format

5. Heartbeat Producer

Heartbeat producers are divided into producers and consumers. In the GCAN-305 module,

only heartbeat producer is supported. That is, GCAN-305 can produce heartbeat producer.

This parameter is defined in the object dictionary 0x1017 (data length is 16 bits, unit:

milliseconds), and its heartbeat producer is shown in Table 4.7. It is the same as node

guarding and lifetime guarding response frame.

Example: Assume that the node address is 0x03, it is in the operating state and the

parameter in 0x1017 is set to 100. Then the slave node sends a frame as shown in Table

4.13 every 100 milliseconds.

COB-ID(CAN-ID) DLC BYTE0
0x703 1 0x05

Table 4.13 Slave node (0x03) heartbeat producer

Note: Life guarding and heartbeat messages cannot be used at the same time in the same

GCAN-305 module.

4.2.2 Synchronous message object (SYNC)

Synchronous messages are divided into consumption and production. In GCAN-305, only

the consumption of synchronous messages is supported. That is, synchronous messages

are received from the master node or other nodes. The frame structure of the synchronous

messages is shown in Table 4.14. 0x1005 of the object dictionary defines the COB-ID of

the received synchronization message, its value is defined as 0x80 in the CANopen

predefined connection set, and 0x1007 of the object dictionary defines the synchronous

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

time window (Require the maximum time interval for updating the corresponding data

after receiving the synchronous message). The synchronous message is mainly used in

the process of receiving and transmitting PDO. Its usage is shown in the following PDO

data transmitting and receiving processes.

COB-ID(CAN-ID) DLC
0x80 0

Table 4.14 Synchronous message frame format (remote frame)

4.2.3 Emergency message object (EMCY)

The GCAN-305 supports emergency messages, that is, when the GCAN-305 has an

internal error, the message is sent. The format of the message is shown in Table 4.15. The

emergency error code specifies the specific type of error that is currently occurring. The

error register stores the current error type. Based on this value, the error type represented

by the current emergency message can be determined. The definition is shown in Table

4.16.

COB-ID(CAN-ID) DLC BYTE0 BYTE1 BYTE2 BYTE3－BYTE7

0x80 + Node ID 8
emergency error code error register Manufacturer specified

information Index 0x1003 Index 0x1001

Table 4.15 Emergency message frame format

Bit Error Type
0 Generic

1 Current

2 Voltage

3 Temperature

4 Communication

5 Device profile specific

6 Reserved(=0)

7 Manufacturer specific

Table 4.16 Error register

The meaning of the emergency error code is shown in Table 4.17.

Emergency error code Code function description

00xx Error Reset or No Error

10xx Generic Error

20xx Current

21xx Current，device input side

22xx Current，inside the device

23xx Current，device output side

30xx Voltage

31xx Mains voltage

32xx Voltage inside the device

33xx Output voltage

40xx Temperature

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

41xx Ambient temperature

42xx Device 16emperature

50xx Device hardware

60xx Device software

61xx Internal software

62xx User software

63xx Data set

70xx Additional modules

80xx Monitoring

81xx communication

8110 CAN overrun

8120 Error Passive

8130 Life Guard Error or Heartbeat Error

8140 Recovered from Bus-Off

82xx Protocol Error

8210 PDO no processed Due to length

error

8220 Length exceed

90xx External error

F0xx Additional functions

FFxx Device specific

Table 4.17 Emergency error code

Example: If the node address is 0x03 and the CAN-bus error exceeds the alert value, an

“Error Passive” (8120) warning will appear. As shown in Table 4.18.

COB-ID(CAN-ID) DLC BYTE0 BYTE1 BYTE2 BYTE3－BYTE7

0x83 8 0x20 0x81 0x11 0x00000000

Table 4.18 Emergency message (bus error)

Note: These errors are issued automatically when an emergency occurs in the GCAN-305

module.

4.2.4 Service data object (SDO)

Object dictionary acts as the main data exchange medium between application layer and

communication layer. All data items of a CANopen device can be managed in the object

dictionary. Each object dictionary item can be positioned using indexes and sub-indexes.

The service data objects (SDO) of the CANopen definition to access these items.

GCAN-305 supports 1 SDO server, which can provide SDO service, and SDO uses the

predefined connection to transmit and receive COB-ID, 0x580 + Node ID (transmit) and

0x600 + Node ID (receive). SDO is divided into accelerated transmission, segment

transmission, and block transmission. Because the acceleration transmission of SDO is

often used in GCAN-305, this document focuses on the acceleration transmission, and the

other transmission types, please refer to CANopen DS301 and related protocol

documents.

1. SDO data transmission

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Accelerated transmission of a frame can only transmit up to 4 bytes of data. The basic

structure of the message is shown in Table 4.19 and Table 4.20. The SDO command

word distinguish the type of the frame data.

COB-ID(CAN-ID) DLC Byte 0 Byte 1-2 Byte 3 Byte 4-7
0x600 + Node ID 8 CMD

(SDO command word)

Object

index

Object

sub-index
**

Table 4.19 SDO message format (Client→Server)

COB-ID(CAN-ID) DLC Byte 0 Byte 1-2 Byte 3 Byte 4-7
0x580 + Node ID 8 CMD

(SDO command word)

Object

index

Object

sub-index
**

Table 4.20 SDO response format (Server→Client)

2. SDO abort service

When an error occurs during SDO transmission, both the SDO client and the server can

send this message to inform each other to abort the current operation. The format of the

abort message is shown in Table 4.21 and Table 4.22. The specific meaning of the abort

error code can refer to Table 4.23.

COB-ID(CAN-ID) DLC Byte 0 Byte 1-2 Byte 3 Byte 4-7
0x600 + Node ID

/0x580+Node ID
8 CMD(SDO command word) index sub-index **

 Table 4.21 Abort message format

CMD（SDO command byte）

Bit 7 6 5 4 3 2 1 0

Client→Server/ Client→Server 1 0 0 - - - - -

Table 4.22 The definition of abort message command word

Abort code Code function description
0503 0000 Trigger bits do not alternate

0504 0000 SDO timeout

0504 0001 Illegal or unknown Client/Server command word

0504 0002 Invalid block size (Block Transfer mode only)

0504 0003 Invalid serial number (Block Transfer mode only)

0503 0004 CRC error (Block Transfer mode only)

0503 0005 Memory overflow

0601 0000 Object does not support access

0601 0001 Attempt to read a write-only object

0601 0002 Attempt to write a read-only object

0602 0000 The object does not exist in the object dictionary

0604 0041 Objects cannot be mapped to PDO

0604 0042 The number and length of mapped objects exceed the PDO

length

0604 0043 General parameters are not compatible

0604 0047 General device internal is incompatibility

0606 0000 Hardware error causes object access to fail

0606 0010 Data type mismatch, service parameter length does not match

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

0606 0012 Data type mismatch, service parameter length is too large

0606 0013 Data type mismatch, service parameter length is too short

0609 0011 Sub-index does not exist

0609 0030 Out of parameter value range (when write access)

0609 0031 parameter value written is too large

0609 0032 parameter value written is too small

0609 0036 The maximum value is less than the minimum

0800 0000 General error

0800 0020 Data cannot be transferred or saved to the application

0800 0021
Data cannot be transferred or saved to the application due to

local control

0800 0022
Data cannot be transferred or saved to the application due to

current device status

0800 0023

The object dictionary dynamically generates an error or the

object dictionary does not exist (for example, an object

dictionary is generated from a file, but an error occurs due to

damaged file)

Table 4.23 Abort error code

4.2.5 Process data object (PDO)

Process data objects (PDOs) are used for transmitting real-time data. The recipients of

PDOs can be master nodes or other slave nodes and do not need to respond. Four TPDOs

(index range 0x1800~0x1803) and four RPDOs (0x1400~0x1403) defined by the

connection set are predefined at the factory.

1. Receive process data object (RPDO)

When the GCAN-305 is at the factory, the mapping object is predefined for each PDO.

As shown in Figure 4.1, all RPDO data mapping items are connected to the 8 bit output

area of the GCAN-305 module by default. That is, when the RPDO receives data from

the network, it updates the data to the corresponding output data area. When the data

update is completed, GCAN-305 will give an interrupt signal (high level→low level).

The interrupt signal pin will remain low level when data is not read, and the interrupt pin

will remain high level after data is read.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Figure 4.23 RPDO mapping relationship

The communication parameters of RPDO are less than TPDO, and RPDO only has one

transmission type corresponding communication. Its value is defined in Table 4.24.

Transmission

Type

Receive PDO Data update

0

PDO will always be received and

analyzed. If necessary, the data is

updated when the next valid SYNC

message is received.

Data is analyzed when a SYNC

message is received. If the previous

RPDO has changed, the data will be

updated on the output. The

transmission of SYNC messages is

acyclic.

1-240

The data is analyzed when the nth

numbered SYNC message is

received. If the previous RPDO has

changed, the data will be updated on

the output. The transmission type

corresponds to the value n. The

transmission of SYNC messages is
cyclic.

241-251 Retain

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

252 Retain

253 Retain

254 PDO will always be received
The application defines and updates

the events of the output data.

255 PDO will always be received
The device sub-protocol defines and

updates the events of the output data.

Table 4.24 The transmission type of RPDO

Example: Assume that the GCAN-305 node is 0x03 and adopts a predefined connection,

and the COB-ID of RPDO0 is 0x203. The received TPDO COB-ID should also be 0x203

as shown in Table 4.25. The TPDO is exactly the same as the COB-ID of RPDO1 with

Node ID 0x03, the RPDO receives this frame of PDO data, and the mapping diagram as

shown in Figure 4.1. updates the data to the data output area. The corresponding data of

the output buffer is shown in Table 4.26.

COB-ID DLC Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0x203 8 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

Table 4.25 RPDO0 receives TPDO of the other nodes

The number of

data area

#0 #1 #2 #3 #4 #5 #6 #7

Data 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

Table 4.26 The data in data area

2. Transmit process data object (TPDO)

Up to 12 TPDOs are supported in the GCAN-305. The four pre-defined PDOs are

available at the factory, namely TPDO0~TPDO3, and TPDO4~TPDO11 are not available.

Pre-defined TPDOs have been pre-defined mapping parameters at the factory and

mapped to data input areas 0x2000 01 ~ 0x2000 96, as shown in Figure 4.2.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Figure 4.2 TPDO mapping relationship

Each TPDO contains corresponding communication parameters. These communication

parameters determine the type of TPDO transmission and the trigger conditions for

sending. Among these parameters, there are mainly three types, which are the

transmission type, the inhibit time, and the event timing.

 Transmission type

The transmission type defines the TPDO transmission mode. The sub-index 2 of the

communication parameters defines the object. The definition of the specific values is

shown in Table 4.27.

Transmission

type
Data request Transmit PDO

0
The data (input value) is read

when a SYNC message is

received.

If the PDO data has been changed compared to

the previous PDO, the PDO will be sent.

1－240
The data is collected and updated as the nth numbered SYNC message is received

and then transmitted on the bus. The transmission type corresponds to the value n.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

241－251 Retain

252

The data (input value) is read

when a SYNC message is

received.
PDO is sent via a remote frame when

requested.

253
The application continuously

collects and updates input data.

254

The application defines the events that cause data requests and PDO transfers. The

event caused the PDO transmission may be that the time of the event timer has

expired. The event timer period is configured with sub-index 5. PDO transmissions

(regardless of whether the event and event timers are configured) always start a new

event timer period.

255

The device profile defines the events that cause data requests and PDO transfers.

The event caused the PDO transmission may be that the time of the event timer has

expired. The event timer period is configured with sub-index 5. PDO transmissions

(regardless of whether the event and event timers are configured) always start a new

event timer period.

Table 4.27 TPDO transmission type

 Inhibit Time

The definition of inhibit time prevent TPDO from sending too much and occupying a

large amount of bus bandwidth to affect the bus communication. Thus defines the

minimum time interval (milliseconds) that the same TPDO send PDO. When this

parameter is 0, it is invalid and defined in sub-index 3 of the communication parameter.

 Event Time

The timing parameter defines the transmitting cycle time (milliseconds) of the PDO. The

PDO transmission type needs to be set to 254 or 255. When this parameter is 0, it is

invalid and defined in sub-index 5 of the communication parameter.

For example, suppose that the current Node ID is 0x20, the TPDO0 event time parameter

is 1000, the transmission type is 254, and the data in the data input area #0~#7 is 0x18,

then TPDO0 transmits data as shown in Figure 4.3.

Figure 4.3 TPDO transmission data

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

5. Serial port operation

5.1 Serial port communication protocol

GCAN-305 communicates with users using asynchronous serial communication. The

communication mode is half duplex, the communication signal is TTL level, and the

communication protocol adopts a custom serial communication protocol.

Asynchronous serial data frame format

Each 1 byte is transmitted with 10 bits, 1 start bit, 8 data bits, no parity bit, 1 stop bit,

baud rate 1200 ~ 115200 bps. Response mode: user device asks (main), GCAN-305

passively answers (slave). The master/slave response frame structure realizes common

data communication. The data communication is initiated by the host and is called the

command frame. The frame format is shown in Table 5.1. After the slave receives the

command frame and responds it, it is called the response frame, as shown in Table 5.2.

1Byte 1Byte 1Byte 1Byte nByte 1Byte
Start word

0x7E

Command code

CMD

Command

information (length)

CMDinfo

Specific

parameters

SpeByte

Command data

 DATA

Check code

CRC

Table 5.1 Command frame format

1Byte 1Byte 1Byte 1Byte nByte 1Byte
Start word

0x7E

Command

code ACK

Command

information (length)

ACKinfo

Specific

parameters

SpeByte

Command data

DATA

Check code

CRC

Table 5.2 Response frame format

The length of the command, response frames is: Command/response information

CMDinfo/ ACKinfo (data length) + 5Byte,

 Start character of frame SOF, fixed 0x7E, one byte in length

 Command code CMD/response code ACK, generally CMD=ACK, one byte in

length

 The command information CMDinfo/response information ACKinfo indicates the

information length (in bytes) not including itself. CMDinfo/ACKinfo = 0 indicates

no data, and CMDinfo/ACKinfo = 1 indicates that this frame contains 1 byte of data.

 The special parameter SpeByte includes the Error, AllDataSegSize, and

DataSegNum information. The specific meanings are shown in Table 5.3.

Error is a specific meaning bit. In the command information, Error is a reserved bit,

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

generally Error = 0. In the response frame, Error is an identity bit, Error = 1, indicating

that the command execution error, DATA area follows the error code. Error = 0,

indicating that the request is successful, DATA area follows the response data.

AllDataSegSize and DataSegNum indicate the segment information. When the data

volume exceeds 255 bytes, it needs to use multiple frames to transmit. In this case, the

segment transmission mode is used, which can be divided into 7 segments, namely 7

frames.

BIT.7 BIT.6 BIT.5 BIT.4 BIT.3 BIT.2 BIT.1 BIT.0
Error AllDataSegSize reserved bit DataSegNum

Table 5.3 The definition of specific parameters（SpeByte）

AllDataSegSize indicates data size of information data, DataSegNum indicates data

number of information data. When AllDataSegSize = DataSegNum, indicates that the

information data is transmitted. AllDataSegSiz and DataSegNum have a minimum of 1

and cannot be 0.

This protocol will not use segment. AllDataSegSize and DataSegNum are fixed to "1".

 Command/response DATA, this part is combined with command/response code to

describe the specific meaning of the data. The length is specified in CMDinfo/

ACKinfo, up to 255 bytes/frame (bytes of data area only)

 Check and CRC: checksum of command/response data, the length is one byte.

Checksum is the exclusive-or value of all previous data. The following is the CRC

calculation formula: CRC ＝ 0x7E^ CMD ^ CMDinfo ^ SpeByte

^DATA[0]^DATA[1]^…^DATA[n-1] or CRC ＝ 0x7E^ ACK ^ ACKinfo ^ SpeByte

^DATA[0]^DATA[1]^…^DATA[n-1]

5.2 Operation command

The user operates the device through the communication serial port of GCAN-305. The

operation command is as shown in section 5.2.1. All operation commands in this section

are considered to have been executed successfully and correctly. If an error occurs, its

error response frame and error code are described in Section 5.3.

5.2.1 Read device information (Command code: 0x01)

Read the device information set by the user through the serial port, and is located in

0x2404 of the object dictionary. The device type is located in the object dictionary

0x1000 00. Because the device is a general device and does not use the standard device

description, this parameter should be 0x00000000 according to CiA definition. It is

recommended that users do not change this parameter. Operation commands and

response frames are shown in Table 5.4 and Table 5.5, n indicates the data length of the

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

command frame. The first byte of the command data field is the operation mode, and the

type of information read by the command is judged according to the byte. The following

describes the operation command in details.

Note: the device information read through the serial port is not the GCAN-305 device

information, is the user device-related device information.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x01 n 0x11 DAT Check

code

Table 5.4 Read device information command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x01 n 0x11/0x91 DAT Check

code

Table 5.5 Read device information response

1. Read device type (operation mode: 0x01)

The device type is located in the object dictionary 0x1000 00, the data length is 4 bytes,

the upper 2 bytes are the GCAN-305 device type, and the lower 2 bytes are the user

device type code (user settings).

Example: The following command reads the device type 0x0A000011, that is, the

current GCAN-305 device type is 0x00 A0, and the user's device type is 0x0000.

Command：0x7E 0x01 0x01 0x11 0x01 0x6E

Response：0x7E 0x01 0x05 0x11 0x01 0x11 0x00 0x0A 0x00 0x71

Note: The use of this module is recommended not to change the device type. Because

GCAN-305 does not use the standard device description, the device type is generally

0x00000000.

2. Read hardware version (operation mode: 0x02)

The hardware version information is located in the object dictionary 0x2404 01, and the

data length is 4 bytes. This value is user setting information.

Example: The following command reads the hardware version information as

0x00000100.

Command：0x7E 0x01 0x01 0x11 0x02 0x6D

Response：0x7E 0x01 0x05 0x11 0x02 0x00 0x01 0x00 0x00 0x68

3. Read software version (operation mode: 0x03)

The software version information is located in the object dictionary 0x2404 02, and the

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

data length is 4 bytes. The value is the user setting information.

Example: The following command reads the software version information as

0x00000100.

Command：0x7E 0x01 0x01 0x11 0x03 0x6C

Response：0x7E 0x01 0x05 0x11 0x03 0x00 0x01 0x00 0x00 0x69

4. Read product code (operation mode: 0x04)

The product code is located in the object dictionary 0x2404 03, the data length is 4 bytes,

the value is the user setting information.

Example: The following command reads the product code as 0x00000001

Command：0x7E 0x01 0x01 0x11 0x04 0x6B

Response：0x7E 0x01 0x05 0x11 0x04 0x01 0x00 0x00 0x00 0x6E

5. Read product revised code (operation mode: 0x05)

The product code is located in the object dictionary 0x2404 04, and the data length is 4

bytes. This value is the user setting information.

Example: The following command reads the product revision code 0x00000001

Command：0x7E 0x01 0x01 0x11 0x05 0x6A

Response：0x7E 0x01 0x05 0x11 0x05 0x01 0x00 0x00 0x00 0x6F

6. Read product serial number (operation mode: 0x06)

The product code is located in the object dictionary 0x2404 05, the data length is 4 bytes,

the value is the user setting information

Example: The following command reads the product serial number 0x00000001

Command：0x7E 0x01 0x01 0x11 0x06 0x69

Response：0x7E 0x01 0x05 0x11 0x06 0x01 0x00 0x00 0x00 0x6C

7. Read product name (operation mode: 0x07)

The product code is located in the object dictionary 0x2404 06, and the data length is 12

bytes (string, the first 11 bytes are valid). This value is the user setting information.

Example: The following command reads the product name "DeviceName"

Command：0x7E 0x01 0x01 0x11 0x07 0x68

Response：0x7E 0x01 0x0D 0x11 0x07 0x44 0x65 0x76 0x69 0x63 0x65 0x4E 0x61

 0x6D 0x65 0x00 0x84 0xFF

5.2.2 Write device information (Command code: 0x02)

The write device information corresponds to the read device information, and the same

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

information corresponds to the same object dictionary. The device type is located in the

object dictionary 0x1000 00. Because the device is a general device and does not use the

standard device description, this parameter should be 0x00000000 according to CiA

definition. It is recommended that users do not change this parameter. Its operation

command and response frame are shown in Table 5.6 and Table 5.7, n indicates the data

length of the command. The first byte of the command data is the operation mode, and

the type of information read by the command is judged according to the byte. The

operation command will be described in details below.

Note: the device information written through the serial port does not change the

GCAN-305 device information, but changes the user device-related device information.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x02 n 0x11 DAT Check

code

Table 5.6 Write device information command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x02 n 0x11 DAT Check
code

Table 5.7 Write device information response

1. Write device type (operation mode: 0x01)

The device type is located in the object dictionary 0x1000 00, the data length is 4 bytes,

the upper 2 bytes are the GCAN-305 device type, and the lower 2 bytes are the user

device type code (user settings).

Example: Write device type value is 0x0011

Command：0x7E 0x02 0x05 0x11 0x01 0x11 0x00 0x00 0x00 0x69

Response：0x7E 0x02 0x01 0x11 0x01 0x6D

2. Write hardware version (operation mode: 0x02)

The hardware version information is located in the object dictionary 0x2404 01, and the

data length is 4 bytes. This value is user setting information.

Example: The following command writes the hardware version to 0x22222222

Command：0x7E 0x02 0x05 0x11 0x02 0x22 0x22 0x22 0x22 0x6A

Response：0x7E 0x02 0x01 0x11 0x02 0x6E

3. Write software version (operation mode: 0x03)

The software version information is located in the object dictionary 0x2404 02, and the

data length is 4 bytes. The value is the user setting information.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Example: The following command writes the software version information as

0x33333333.

Command：0x7E 0x02 0x05 0x11 0x03 0x33 0x33 0x33 0x33 0x6B

Response：0x7E 0x02 0x01 0x11 0x03 0x6F

4. Write product code (operation mode: 0x04)

The product code is located in the object dictionary 0x2404 03, the data length is 4 bytes,

the value is the user setting information.

Example: The following command writes the product code as 0x44444444

Command：0x7E 0x02 0x05 0x11 0x04 0x44 0x44 0x44 0x44 0x6C

Response：0x7E 0x02 0x01 0x11 0x04 0x68

5. Write product revised code (operation mode: 0x05)

The product code is located in the object dictionary 0x2404 04, and the data length is 4

bytes. This value is the user setting information.

Example: The following command writes the product revised code 0x55555555

Command：0x7E 0x02 0x05 0x11 0x05 0x55 0x55 0x55 0x55 0x6D

Response：0x7E 0x02 0x01 0x11 0x05 0x69

6. Write product serial number (operation mode: 0x06)

The product code is located in the object dictionary 0x2404 05, the data length is 4 bytes,

the value is the user setting information

Example: The following command writes the product serial number 0x66666666

Command：0x7E 0x02 0x05 0x11 0x06 0x66 0x66 0x66 0x66 0x6E

Response：0x7E 0x02 0x01 0x11 0x06 0x6A

7. Write product name (operation mode: 0x07)

The product code is located in the object dictionary 0x2404 06, and the data length is 12

bytes (string, the first 10 bytes are valid). This value is the user setting information.

5.2.3 Write GCAN-305 input buffer data (Command code: 0x10)

The GCAN-305's input buffer is 8 bits wide from #0 to #95. Corresponding to the input

buffer 16 bits #0 to #47 and 32 bits #0 to #23, they occupy the same memory area. If you

need to operate on the #0 number of the 32-bit area, you can operate #0~#3 in the 8bit

area and #0~#1 in the 16bit area to obtain the same result. And so on, only the serial port

provides operations on the 8bit area.

The GCAN-305 input buffer is a write-only area that can write 96 bytes of data at most.

The operation and response command are shown in Table 5.8 and Table 5.9. The first

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

byte of the command data indicates the current data offset in the input data area. The

length of the data written is n-1.

Note: Offset + data length should not be greater than 96.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x10 n 0x11 Address

offset

DAT Check

code

Table 5.8 Write buffer command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x10 n 0x11 DAT Check

code

Table 5.9 Write buffer response

Example: Eight bytes of data are written to the address (that is, the offset is 0) starting

from the number #0 of 8-bit area, and the data is 0x12 0x12 0x12 0x12 0x12 0x12 0x12

0x12.

Command：0x7E 0x10 0x09 0x11 0x00 0x12 0x12 0x12 0x12 0x12 0x12 0x12 0x12

 0x76

Response：0x7E 0x10 0x01 0x11 0x00 0x7E

5.2.4 Read GCAN-305 output buffer data (Command code: 0x11)

The GCAN-305's output buffer is 8 bits wide from #0 to #95. Corresponding to the

output buffer 16 bits #0 to #47 and 32 bits #0 to #23, they occupy the same memory area.

If you need to operate on the #0 number of the 32-bit area, you can operate #0~#3 in the

8bit area and #0~#1 in the 16bit area to obtain the same result. And so on, only the serial

port provides operations on the 8bit area.

The GCAN-305 output buffer is a read-only area that can read 96 bytes of data at most.

The operation and response command are shown in Table 5.10 and Table 5.11. The first

byte of the command data indicates the current data offset in the output data area, and the

second byte indicates the length of the data that needs to be read. The first byte in the

response command data indicates the offset in the output buffer, and the returned data

length is n-1.

Note: Offset + data length should not be greater than 96.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x11 n 0x11 Address

offset

DAT Check

code

Table 5.10 Read buffer command

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x11 n 0x11 Address

offset

DAT Check

code

Table 5.11 Read buffer response

Example: Read the offset of eight bytes data starting from the number #0 in output buffer

area, and the data is 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

Command：0x7E 0x11 0x02 0x11 0x00 0x08 0x74

Response：0x7E 0x11 0x09 0x11 0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

 0xFF

5.2.5 Read NodeID of GCAN-305 (Command code: 0x12)

When GCAN-305 doesn't use DIP switch or other ways to set NodeID, user can set

NodeID of GCAN-305 through serial port. The set NodeID is stored in memory, and the

module takes effect after reset (the setting value must be in the range of 1~127).

Note: When the setting NodeID doesn't use the DIP switch or the setting is invalid (0x00),

the setting value via the serial port will take effect.

1. Write NodeID of GCAN-305 (operation mode: 0x00)

The NodeID is located in the object dictionary 0x2403 01, which represents the NodeID

value set by the current module. After the setting to reset or restart, the module will take

effect. The NodeID command format and response commands for the write module are

shown in Table 5.12 and Table 5.13. The first byte of the command data indicates the

current operation mode, and the second byte indicates the value of the NodeID to be

written. The NodeID written by GCAN-305 returns a correct answer if successful (n =

0x01, the first byte of the command byte is the operating mode).

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(2 Byte)

CRC

0x7E 0x12 2 0x11 operation

mode

(0x00)

DAT

(NodeID)

Check

code

Table 5.12 Write NodeID command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x12 n 0x11 DAT Check

code

Table 5.13 Write NodeID response

Example: Set the NodeID of the GCAN-305 module to 0x03, and its commands and

responses are as follows,

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Command：0x7E 0x12 0x02 0x11 0x00 0x03 0x5F

Response：0x7E 0x12 0x01 0x11 0x00 0x7C

2. Read NodeID of GCAN-305 (operation mode: 0x01)

The NodeID read by the read node NodeID is the NodeID that the current node is using,

and is located in a different object dictionary from the write NodeID. The read NodeID is

located in the object dictionary 0x2400 00, so the written NodeID and the read back

NodeID may be different. Its command mode is shown in Table 5.14 and Table 5.15.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(1 Byte)

CRC

0x7E 0x12 0x01 0x11 operation mode

(0x01)

Check

code

Table 5.14 Read NodeID command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(2 Byte)

CRC

0x7E 0x12 2 0x11 operation

mode

(0x00)

DAT

(NodeID)

Check

code

Table 5.15 Read NodeID response

Note: The read NodeID value is the NodeID that the current module is using, and it is not

necessarily the same as the written NodeID.

Example: Read the current NodeID of GCAN-305 and its value is 0x03

Command：0x7E 0x12 0x01 0x11 0x01 0x7D

Response：0x7E 0x12 0x02 0x11 0x01 0x03 0x5E

5.2.6 Read baud rate index value of GCAN-305 (Command code: 0x13)

Similar to setting the NodeID of the GCAN-305, when the CAN communication baud

rate is not set by the DIP switch or other methods, the user can set the GCAN-305 baud

rate index value through the serial port. The value is stored in memory and will take

effect when the GCAN-305 is powered on or reset. The range of this value is 0~8, and

the other values are invalid.

1. Write baud rate index value of GCAN-305 (Operation mode: 0x00)

The baud rate index value is in the object dictionary 0x2403 02, and the setting value is

valid from 0 to 8, otherwise, an error code is returned. The command format is shown in

Table 5.16 and Table 5.17. When the set command is executed correctly (n = 0x01, the

first byte of the command byte is the operation mode). The correspondence between the

baud rate index value and the actual value is shown in Table 3.4.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(2 Byte)

CRC

0x7E 0x13 2 0x11 operation

mode

(0x00)

DAT

(Baud rate

index)

Check

code

Table 5.16 Write node baud rate index command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x13 n 0x11 DAT Check

code

Table 5.17 Write node baud rate index command response

Example: Set the baud rate index of GCAN-305 module to 0x04. According to Table 3.4,

set the CAN baud rate index to 0x04, and the CAN communication baud rate is 125Kbps.

Command and response frames are as follows.

Command：0x7E 0x13 0x02 0x11 0x00 0x04 0x7A

 Response：0x7E 0x13 0x01 0x11 0x00 0x7D

2. Read baud rate index value of GCAN-305 (Operation mode: 0x01)

The read baud rate index is in the object dictionary 0x2401 00. Similar to the read

NodeID, the read baud rate index value is not necessarily the same as the written value.

Because the read baud rate index value is the value that the current module is using, it

will be the same after the written value is enabled (module reset or restart). Its command

frame format is shown in Table 5.18 and Table 5.19.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x13 1 0x11 operation mode

(0x00)

Check

code

Table 5.18 Read node baud rate index command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(2 Byte)

CRC

0x7E 0x13 2 0x11 operation

mode

(0x01)

DAT

(Baud rate

index)

Check

code

Table 5.19 Read node baud rate index command response

Example: Assuming that the baud rate of the current module is 125 Kbps, the read index

value is 0x04, and its commands and responses are as follows:

Command：0x7E 0x13 0x01 0x11 0x01 0x7C

Response：0x7E 0x13 0x02 0x11 0x01 0x04 0x7B

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

5.2.7 Read and write CAN controller timing parameters of GCAN-305 (Command

code: 0x14)

The real baud rate is a 32-bit value including CAN controller timing and frequency

division parameter. Unlike the baud rate index value, a standard baud rate table has been

fixed in the GCAN-305 module. Therefore, the CAN communication baud rate can be set

through the index. If the user needs to use baud rate of the table that hasn't been provided,

the user can set any baud rate through command code 0x14. Please contact us for the

specific baud rate value.

Note: If the DIP switch setting and baud rate index value are invalid, the baud rate timing

parameter set by the user is valid.

1. Write baud rate value (Operation mode: 0x00)

The real baud rate is located in the object dictionary 0x2403 03. It is enabled when the

DIP switch setting and the baud rate index value are invalid (0x00000000 and

0xFFFFFFFF are invalid). The command format is shown in Table 5.20 and Table 5.21. If

the command is executed successfully, the correct answer is returned (n=0x01, the first

byte of the command byte is the operation mode).

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(5 Byte)

CRC

0x7E 0x14 5 0x11 operation

mode

(0x00)

DAT

(Baud rate

index)

Check

code

Table 5.20 Write node baud rate command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x14 n 0x11 DAT Check

code

Table 5.21 Write node baud rate command response

Example: Write a baud rate of 125Kbps to the GCAN-305 module. The commands and

responses are as follows

Command：0x7E 0x14 0x05 0x11 0x00 0x0B 0x00 0x2B 0x00 0x5E

Response：0x7E 0x14 0x01 0x11 0x00 0x7A

2. Read baud rate value (Operation mode: 0x01)

The read baud rate value and the write baud rate value are in object dictionary 0x2403 03.

The command modes are shown in Table 5.22 and Table 5.23.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(1 Byte)

CRC

0x7E 0x14 n(0x01) 0x11 DAT (operation mode) Check

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

 code

Table 5.22 Write node baud rate command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(5 Byte)

CRC

0x7E 0x14 5 0x11 operation

mode

(0x01)

DAT

(Baud

rate)

Check

code

Table 5.23 Write node baud rate command response

Example: Assuming that the current baud rate is 0x2B000B, the read command and

response command are as follows

Command：0x7E 0x14 0x01 0x11 0x01 0x7B

Response：0x7E 0x14 0x05 0x11 0x01 0x0B 0x00 0x2B 0x00 0x5F

5.2.8 Transmit emergency code (Command code: 0x15)

When a certain error occurs in the device, it can be sent to the CAN bus through

CANopen to inform the CANopen master device that the current equipment has an error.

The error code consists of 5 bytes and is defined by the user. Its format is shown in Table

5.24 and Table 5.25. When the device executes correctly, the correct response is

answered (n=0x01, the first byte of the command byte is the operation mode).

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(5 Byte)

CRC

0x7E 0x15 5 0x11 operation

mode

(0x00)

DAT

(5 bytes)

Check

code

Table 5.24 Transmit emergency error code command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(n Byte)

CRC

0x7E 0x15 n 0x11 DAT Check

code

Table 5.25 Transmit emergency error code command response

Example: Assuming that the current device has an error and the error code is defined as

0x9988776655, the command format is as follows.

Command：0x7E 0x15 0x06 0x11 0x00 0x55 0x66 0x77 0x88 0x99 0x29

Response：0x7E 0x15 0x01 0x11 0x00 0x7B

5.2.9 Read the status of the current module (Command code: 0x16)

The user can read the status of the current module through this command. The

correspondence between the read value and the current status is shown in Table 4.8. Its

command format is shown in Table 5.26 and Table 5.27.

Start Command Command Specific Command data CRC

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

byte code information parameters (1 Byte)
0x7E 0x15 1 0x11 operation code

(0x01)
Check

code

Table 5.26 The current GCAN-305 status

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(2 Byte)

CRC

0x7E 0x15 2 0x11 operation

mode

(0x01)

DAT

(Stays

value)

Check

code

Table 5.27 The current GCAN-305 status response

Example: Assuming the current GCAN-305 module is in operation, the read status value

is 0x05

Command：0x7E 0x16 0x01 0x11 0x01 0x79

Response：0x7E 0x16 0x02 0x11 0x01 0x05 0x7F

5.2.10 Start the node into operation (Command code: 0x17)

Users can use this command to make all slave devices in the CANopen network enter the

operating status, including the module also enter the operating status. Its command

format is shown in Table 5.28 and Table 5.29.

Note: Use this command with caution in the case of master management in the network.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(1 Byte)

CRC

0x7E 0x17 1 0x11 operation code

(0x00)
Check

code

Table 5.28 Enable slaves to enter operating status

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(1 Byte)

CRC

0x7E 0x17 1 0x11 operation code

(0x00)
Check

code

Table 5.29 Enable slaves to enter operating status response

Example: Enable the current CANopen network to enter the operating status, its

commands and responses are as follows

Command：0x7E 0x17 0x01 0x11 0x00 0x79

Response：0x7E 0x17 0x01 0x11 0x00 0x79

5.2.11 Change the serial port baud rate (Command code: 0x18)

The default baud rate of the communication serial port is 115200bps. The setting range is

shown in Table 5.30. Change the baud rate of the serial port according to the demand, at

the same time the baud rate index value is saved until it is changed again (Set the baud

rate value to use the current baud rate to communicate, after the changed and delayed for

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

a while, and then use the new setting Baud rate for communication). It is forbidden to

frequently change the communication baud rate, which may cause unsuccessful

communication or data loss.

Index value Baud rate(bps)
0 1200

1 2400

2 4800

3 9600

4 19200

5 38400

6 57600

7 115200

Table 5.30 Serial port baud rate and index

Its command format is shown in Table 5.31 and Table 5.32.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(2 Byte)

CRC

0x7E 0x18 2 0x11 operation

code

(0x00)

baud rate

index

Check

code

Table 5.31 Set the serial port baud rate command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(1 Byte)

CRC

0x7E 0x18 1 0x11 operation code

(0x00)

Check

code

Table 5.32 Serial port baud rate response

Example: If the baud rate of the current module is set to 115200 bps, the index value is 7,

and the command frame and response frame are as follows.

Command：0x7E 0x18 0x02 0x11 0x00 0x07 0x72

Response：0x7E 0x18 0x01 0x11 0x00 0x76

Note: It is recommended to change the baud rate and delay about 20ms, and then use the

new baud rate to communicate.

5.2.12 Time_ Stamp (Command code: 0x19)

In order to synchronize the time of all nodes in the CANopen network, the CANopen host

sends a synchronization time identification object to the network. As a standard

CANopen slave module, GCAN-305 can timely obtain the synchronization time in the

network. The user can obtain the network time through the communication serial port.

The time format follows the definition of DS301 V4.02.

Note: the correct network time can only be read out after the GCAN-305's network time

has been updated. Otherwise, an error code (error code was not updated) can be returned.

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

This time can only be read once, then the value is invalid and return an error code.

The command format for reading time is shown in Table 5.33 and Table 5.34.

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(1 Byte)

CRC

0x7E 0x19 1 0x11 operation code

(0x01)
Check

code

Table 5.33 Read the current network time command

Start

byte

Command

code

Command

information

Specific

parameters

Command data

(7 Byte)

CRC

0x7E 0x19 7 0x11 operation

code

(0x01)

Time Of
Day

Check

code

Table 5.34 Read the current network time response

Example: When the data is read, the network time of the current module has been

updated. The time is the relative time starting from January 1, 1984. The returned time is

0x2552 days 0x0237777C milliseconds relative to January 1, 1984, and the current time

is calculated as February 27, 2010, and 10:19:49.

Command：0x7E 0x19 0x01 0x11 0x01 0x76

Response：0x7E 0x19 0x07 0x11 0x01 0x7C 0x77 0x37 0x02 0x52 0x25 0x39

When the network time is not received or not updated, the response command code

is as follows,

Error response：0x7E 0x19 0x02 0x91 0x01 0x08 0xFD

5.3 GCAN-305 serial port error response

In all serial operation commands, when the parameters of the command are incorrect or

other errors occur during communication, GCAN-305 will return an error code (the

highest bit of the specified parameter is 1, indicating the current error response frame),

error code frame format is shown in Table 5.35. The ACK is the same as the operation

command code, and the response operation mode code is the same as the current

command operation mode code. The error code indicates the error category of the current

operation. The error code table is shown in Table 5.36.

Start

byte

Command

code

Command

information

(Length)

Specific

parameters

Response data

(2 Byte)

CRC

0x7E ACK=CMD 0x02 0x91 operation

mode

error code Check

code

Table 5.35 GCAN-305 command executes error response

Error code

(data)

Instructions Remark

0x01 Command error Don't support

 Shenyang Guangcheng Technology Co., Ltd. Embedded CANopen(Slave) to UART

this command

0x02 Data length error Beyond writable

area

0x03 Address error Out of address

range

0x04 An error occurred while operating

the protocol stack
-

0x05 Error storing data -
0x06 Data value is out of range -
0x07 Operation mode is not supported -
0x08 Network time is not updated and is

currently unavailable
-

Table 5.36 Error code table

Example: Assume that the baud rate index of the GCAN-305 is written to 10. Because

the baud rate index range is 0~8, the value is invalid and must be error during execution.

The error code is 0x06 (the data value is out of range). The command frame and response

frame are as follows,

Command：0x7E 0x13 0x02 0x11 0x00 0x10 0x6E

Response：0x7E 0x13 0x02 0x91 0x00 0x06 0xF8

Sales and service

Shenyang Guangcheng Technology Co., Ltd.

Address: Industrial Design Center, No. 42 Chongshan

 Middle Road, Huanggu District, Shenyang

 City, Liaoning Province.

QQ: 2881884588

E-mail: 2881884588@qq.com

Tel: +86-024-31230060

Website: www1.gcanbox.com

Sales and service Tel: +86-18309815706

After - sales service telephone Number: +86-13840170070

 WeChat Number: 13840170070

http://www.gcgd.net/

